
Design of a Scalable Event Notification Service:

Interface and Architecture

Antonio Carzaniga
Dept. of Computer Science

University of Colorado

Boulder, CO 80309-0430, USA

+1 303 492 4463

carzanig@cs.colorado.edu

David S. Rosenblum
Dept. of Inf. and Computer Science

University of California

Irvine, CA 92697-3425, USA

+1 949 824 6534

dsr@ics.uci.edu

Alexander L. Wolf
Dept. of Computer Science

University of Colorado

Boulder, CO 80309-0430, USA

+1 303 492 5263

alw@cs.colorado.edu

University of Colorado
Department of Computer Science
Technical Report CU-CS-863-98

August 1998

c
�

1998 Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf

Abstract

Event-based distributed systems are programmed to operate in response to events. An event notifica-
tion service is an application-independent infrastructure that supports the construction of event-based
systems. While numerous technologies have been developed for supporting event-based interactions
over local-area networks, these technologies do not scale well to wide-area networks such as the Internet.
Wide-area networks pose new challenges that have to be attacked with solutions that specifically address
issues of scalability. This paper presents Siena, a scalable event notification service that is based on a
distributed architecture of event servers. We first present a formally defined interface that is based on
an extension to the publish/subscribe protocol. We then describe and compare several different server
topologies and routing algorithms. We conclude by briefly discussing related work, our experience with
an initial implementation of Siena, and a framework for evaluating the scalability of event notification
services such as Siena.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1998 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Design of a Scalable Event Noti cation Service: Interface and
Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
Event-based distributed systems are programmed to operate in response to events. An event noti cation
service is an application-independent infrastructure that supports the construction of event-based systems.
While numerous technologies have been developed for supporting event-based interactions over local-area
networks, these technologies do not scale well to wide-area networks such as the Internet. Wide-area
networks pose new challenges that have to be attacked with solutions that speci cally address issues of
scalability. This paper presents Siena, a scalable event noti cation service that is based on a distributed
architecture of event servers. We rst present a formally de ned interface that is based on an extension to
the publish/subscribe protocol. We then describe and compare several different server topologies and
routing algorithms. We conclude by brie y discussing related work, our experience with an initial
implementation of Siena, and a framework for evaluating the scalability of event noti cation services such
as Siena.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

The event-based architectural style is well estab-
lished and widely used. Several classes of appli-
cations adopt an event-based architecture, includ-
ing integrated development environments, work-
flow and process support systems, software deploy-
ment systems, graphical user interfaces, network
management tools, and security monitors. In this
style, components are programmed as reactive ob-
jects that perform actions in response to certain
events. Such style is particularly suitable for ap-
plications that are reactive by nature, such as net-
work and security monitors, and also for systems
that integrate heterogeneous components and thus
require loosely coupled interaction.

The connectivity provided by wide-area net-
works such as the Internet offers even stronger mo-
tivation for using an event-based architecture. New
applications can be designed that take advantage
of the vast number of information sources avail-
able on-line. Examples are stock market analysis
tools and data mining and indexing tools. Also, in
the context of a wide-area network, existing appli-
cations can be integrated at a much higher scale;
for example, workflow systems can be federated for
companies that have multiple distributed develop-
ment sites or even across corporate boundaries.

The common infrastructure underlying event-
based systems is the event service. An event service
is a general-purpose facility that provides for obser-
vation and notification of events among distributed
objects. Numerous technologies that realize an
event service have been developed and effectively
used for quite a long time. However, most of them
target local-area networks. Extending the support
of an event service to a wide-area network cre-
ates new challenges and trade-offs. Not only does
the number of objects and events grow tremen-
dously, but also many of the assumptions made
for local-area networks, such as, low latency, abun-
dant bandwidth, homogeneous platforms, contin-
uous reliable connectivity, and centralized control,
are no longer valid.

Some technologies address issues related to
wide-area services. Among them, are new tech-

nologies such as Tibco [8] that specifically pro-
vide an event service, but also, more mature tech-
nologies such as the USENET news infrastructure,
IP multicasting, the Domain Name Service (DNS),
that, although not explicitly targeted at this prob-
lem domain, represent potential or partial solu-
tions. The main problem with all of these technolo-
gies is that they are either specific to some appli-
cation domain or not flexible enough to be usable
as a generic infrastructure for event-based applica-
tions.

This paper presents Siena, a project directed to-
wards the design and implementation of a scalable
general-purpose event service. The contributions
of this work are a formal definition of an event ser-
vice that combines expressiveness with scalability
together with the design and implementation of the
architectures and algorithms that realize this event
service as a distributed infrastructure. One obvi-
ous issue that we must face in this research is the
evaluation of the solutions that we propose. To this
end, we have performed systematic simulations of
our architectures and algorithms in several network
scenarios.

The following section gives the basics of the Siena
event service. The paper then continues in Sec-
tion 3 with a formal definition of the interface
and the semantics of the event service. The ar-
chitectures and algorithms that realize the service
are presented in Section 4. Section 5 provides an
overview of some related systems and research top-
ics. Our evaluation effort and our experience with
a prototype is presented in Section 6. We then con-
clude in Section 7 with some directions for future
work and additional analysis and evaluation.

2 Event Service

An event service is a dispatcher of event notifica-
tions. Applications that use the event service can be
interested parties, i.e., event consumers, or objects
of interest, i.e., event generators, or both. The dis-
patching is regulated by advertisements, subscrip-
tions, and publications.

Figure 1 shows the high-level architecture of an

2

object of interest interested party

publish

advertise subscribe

notify

(1) (2)

(4)

event service

(3)

Figure 1: Event service

event service. Informally, objects of interest specify
the events they intend to publish by means of ad-
vertisements (1), while interested parties specify the
events they are interested in by means of subscrip-
tions (2). Objects of interest can then publish noti-
fications (3), and the event service will take care of
delivering the notifications to the interested parties
that subscribed for them (4). The terms used in this
paper, in particular the terms notification, object of
interest, and interested party, follow the framework
proposed in [13].

Without loss of generality, we will always assume
that objects of interest are “active”, i.e., they au-
tonomously publish event notifications. Passive
objects, such as files, can participate in an event-
based interaction by means of other active objects
that act as proxies and that notify events on behalf
of the passive objects. This distinction is similar to
the one made in JEDI [2]. In any case, the passive
object will not be considered in the models.

2.1 Event Servers

The event service can be realized by connecting
many events servers. An application contacts the
event service via one event server also referred as
its access point. (see Figure 2).

2.2 Identifiers and Handlers

In order for interested parties, objects of inter-
est, and event servers to communicate, a naming
scheme must be adopted whereby objects can be
uniquely identified. A handling scheme must also
be adopted so that objects can be contacted using

event service

servers

access points

clients

Figure 2: Internal architecture of the event service

appropriate communication protocols.

The Siena event service adopts the generic
URI [1] form for both its naming and handling
scheme. This means that every object has a URI as-
sociated with it that defines both the identity of that
object and the handler used by the event service to
deliver a notification to that object. For example, if
the URI mailto:carzanig@cs.colorado.edu identifies
an object, then mailto:carzanig@cs.colorado.edu
is both the unique name of that object and the
method that the event service uses to communicate
with that object. In this case, in order to send a no-
tification to that object, the event service will send
an e-mail message to carzanig@cs.colorado.edu.

The event service recognizes the most com-
mon URI schemas, including mailto and http,
and thus implements the communication proto-
cols implied by each schema. The implementa-
tion of the event service defines and maintains
the URIs corresponding to event servers, how-
ever it does not directly assign or maintain URIs
for interested parties or objects of interest. Such
URIs are provided and operated by clients them-
selves. This means that if a client identifies it-
self as mailto:carzanig@cs.colorado.edu, then the
event service will simply assume that the mailbox
carzanig@cs.colorado.edu exists and is directly ac-
cessible.

3

3 Interface and Semantics of the

Event Service

The Siena event service exports the following main
functions:

publish(notification n)

subscribe(URI subscriber, pattern p)
unsubscribe(URI subscriber, pattern p)

advertise(URI publisher, filter f)
unadvertise(URI publisher, filter f)

In the following subsections we present the syn-
tax and the semantics of these functions by for-
mally defining notifications, filters, and patterns
and their role in every function. We then present a
formal definition of the semantics of the event ser-
vice showing how it can affect scalability.

3.1 Notifications, Filters, and Patterns

An event notification is a set of attributes in
which each attribute is a triple: attribute ��
name � type � value � . For example, the notification

displayed in Figure 3 represents a stock price varia-
tion event.

string event = finance/exchanges/stock
time date = Mar 4 11:43:37 MST 1998
string exchange = NYSE
string symbol = DIS
float prior = 105.25
float change = -4
float earn = 2.04

Figure 3: Example of a notification

In an event notification, attributes are uniquely
identified by their name. Attribute types belong
to a pre-defined set of types. A fixed set of oper-
ators is also defined. Types and operators are an
integral part of the event service definition. We do
not a give a precise definition for the types and op-
erators here, but instead simply assume those de-
fined in modern programming languages. If � is
an attribute of a notification, ��� �	��
� , ��� ������� , and

��� ��������� denotes its name, type, and value respec-
tively.

3.2 Filters

An event filter, or simply a filter, defines a class of
event notifications by specifying a set of attribute
names and types and some constraints on their val-
ues.

string event *= finance/exchanges/*
string exchange == NYSE
string symbol == DIS
float change � 0

Figure 4: Example of an event filter

Figure 4 shows a filter that selects negative stock
price variations for a specific stock on a specific ex-
change. More formally, a filter is made of a set of at-
tribute filters. Each attribute filter specifies a name,
a type, a boolean binary operator, and a value for
an attribute: attr-filter = (name, type, operator,
value). In an event filter, there can be more than
one attribute filter with the same name. For an at-
tribute filter � , ���
�������� !� � !����"#���	$&%'�(!����"#���	$�)*� de-
notes the application of the operator defined by �
to !�+��",���	$�% and !�+��",���	$-) .

3.3 Patterns

A pattern of events is defined by combining a set of
event filters using filter combinators.

string event *= finance/exchanges/*
string symbol == MSFT
float change � 0

and then

string event *= finance/exchanges/*
string symbol == NSCP
float change . 0

Figure 5: Example of a pattern of events

An example of a pattern that combines two filters
into a sequence is shown in Figure 5. More formally,

4

an event filter is itself a pattern, and any two pat-
terns can be combined to form another pattern by
means of a combinator. Intuitively, while a filter se-
lects one event notification at a time, a pattern can
select several notifications that together match an
algebraic combination of filters.

We say that a pattern is simple when it contains
only one event filter. Also, since subscriptions sub-
mit patterns to the event service, we say that a sub-
scription is simple when it requests a simple pat-
tern or compound when it requests a pattern with
two or more filters.

For the purpose of this paper, we will only discuss
the and then or sequence combinator that construct
patterns matching a temporal sequence of events.

3.4 Compatibility Relations

In order to give the precise semantics of the event
service, we must introduce and define the concept
of compatibility between notifications and sub-
scriptions, and between subscriptions and adver-
tisements. The compatibility between notifications
and subscriptions defines the semantics of sub-
scriptions and comes into play because the main
job of the event service is to decide whether or
not notifications that are published match any sub-
scription submitted by an interested party. In case a
notification matches some subscriptions, the event
service routes the notification towards all the inter-
ested parties that posted such subscriptions. The
compatibility between subscriptions and adver-
tisements is also important because, in setting up
the routing information, the event service takes ad-
vertisements into account to see if they are relevant
to any subscription. The compatibility between
subscriptions and advertisements subsumes a rela-
tion between notifications and advertisements that
defines the semantics of advertisements.

The following sections define what it means for
a notification to be compatible with a subscription
and for a subscription to be compatible with an
advertisement. Initially we consider only simple
subscriptions (i.e., event filters) and then extend
the compatibility relations to compound subscrip-

tions.

3.4.1 Notifications vs. Subscriptions

Let � be the domain of notifications and ��� the set
of all the simple subscriptions. We define the fol-
lowing binary relation:

����� #
 �����
	
� ������� ����� �
For brevity, we represent the relation����� #
 �+���
	�� ��� �� with the symbol ‘ � �� ’. When a
notification � is compatible with a subscription�

, we also say that
�

covers � , and we denote with� � � � � � the set of notifications � covered by
�
.

We define the semantics of � �� by defining
� � � �

as follows:

� � � ��������������� ��� � � ��!&�#"������
����� �	�-
�� � �#"	� �	��
��%$ �&�#� ���#�+� � �&" � ���#�+�

$�&�,�
�������� !� � �&" � ����� � ���(����� ���������,�(' (1)

This mandates that all attributes in the subscrip-
tion appear by name in the notification and that
they match by type and value. The notification can
also contain other attributes that are not specified
in the subscription.

3.4.2 Subscriptions vs. Advertisements

We first define the semantics of advertisements
similarly to what we have done in the previous sec-
tion for subscriptions. Let) be the domain of ad-
vertisements and �*�+) an advertisement. We de-
fine the set of notification defined (or covered) by � :

� � �&��������������� �&",���-��!&��./���,�
�&" � �	�-
�� � ��.�� �	��
��%$ �#" � ���#�+� � ��.�� ���#�+�
$�&.��
������� !� � �#" � ����������� �&.-� ����� � �,�0'

(2)

This says that an advertisement covers all the no-
tifications that have a set of attributes included
(present by name and matching by value) in the set
of attributes of the advertisement.

5

Given the definition of
� � �&� we can easily define��� � #
 �+���
	�� � � � � (� � � for short), the compatibility re-

lation between subscription and advertisements:

� � � � � � �)
Intuitively, the compatibility between a subscrip-
tion

�
and an advertisement � corresponds to the

relation between the two sets of notifications de-
fined by

�
and � respectively, thus:

� � � � ��� � � �&��� � � � ����	� (3)

This says that a subscription
�

is compatible with an
advertisement � whenever the set of notifications
defined by � ,

� � �&� , includes one or more notifica-
tions that are also covered by

�
. When a subscrip-

tion
�

is compatible with an advertisement � , we
also say that � covers

�
.

3.5 Semantics of the Service

In this section we discuss the behavior of the event
service in response to advertisements, subscrip-
tions, and notifications. We have studied and im-
plemented two alternative semantics:

 subscription-based, and

 advertisement-based.

These two behaviors define two different event
services. The reason to present both and not to
make a definite choice here is that these two se-
mantics impose different requirements upon the
implementation of the event service, resulting in
different architectures with different degrees of
scalability. At this point, we do not have enough ex-
perience in using the event service to know which
one is more suitable, flexible, and scalable. It might
also make sense to provide both of them and let the
user choose which one works best for each particu-
lar situation.

3.5.1 Subscription-based Event Service

In the subscription-based event service, only sub-
scriptions determine the semantics of the service.

Advertisements may be used by the event service
(e.g., to optimize the routing of subscriptions), but
they are not required. The event service will guar-
antee the delivery of a notification to all interested
parties that have subscribed for it. Referring to the
compatibility relation between notifications and
subscriptions, the event service will deliver a noti-
fication � to an interested party � if and only if :

1. � subscribes for
�
; and

2. ��� �� � .

3.5.2 Advertisement-based Event Service

In the advertisement-based event service, both ad-
vertisements and subscriptions are used. In partic-
ular, advertisements are used to make notifications
visible to all the participants of the event service.
More specifically, the event service will guarantee
the delivery of a notification � posted by object �
to interested party � if and only if

1. � advertises � ;

2. � subscribes for
�
;

3.
� � � � � ; and

4. ��� �� � .
Note that if an interested party � sends a sub-

scription
��

that covers � , but � has never posted
any advertisement � that covers

��
, then the event

service will not guarantee the delivery of � to � .

3.6 Patterns

So far we have discussed the semantics of the
event service for simple subscriptions, i.e., for sub-
scriptions that are composed of one event fil-
ter. However, both the subscription-based and the
advertisement-based semantics can be easily ex-
tended to incorporate patterns.

As described above, patterns are defined by pat-
tern filters, which are expressions whose elemen-
tary terms are simple filters. Thus, a subscrip-
tion to a pattern filter can be logically viewed as

6

a set of separate subscriptions to all the elemen-
tary components of that pattern filter plus a moni-
tor that assembles sequences of notifications, each
one matching one of the elementary components
according to the semantics of the combinators.
Thus, the event service will guarantee the delivery
of a pattern of notifications matching an event fil-
ter only if it can guarantee the delivery of all the
elementary components of the filter. Note that,
from this definition of the semantics of patterns,
the delivered pattern of notifications contains the
first notification matching each elementary com-
ponent.

3.7 Comments on the Semantics of the
Event Service

The rationale behind the two semantics and their
extensions to patterns is to define an event notifi-
cation service that (1) behaves in an intuitive and
useful way, and (2) allows for an efficient and scal-
able realization. In this paper, we do not explore
the domain of applications that would make use
of an event service, so we rely on our previous re-
search and experience to justify the first item. In-
stead, we will elaborate more on the second item
by showing how the information provided by adver-
tisements and subscriptions with the given seman-
tics can be effectively used to direct the communi-
cation between event servers in an efficient way.

Timing and quality of service are important, but
they’re not covered in details in this paper. Timing
issues might arise when considering unsubscrip-
tions and unadvertisements. For example, an in-
terested party may send an unsubscription when
some notifications have already been sent to it. In
that case, the interested party will probably receive
undesired notifications. Other timing issues re-
garding the ordering of notifications and thus pat-
tern recognition can arise depending on the topol-
ogy and latency of the network. For the time be-
ing we will assume that the event service is able
within a finite time to shuffle notifications so that
they are sent (and received) in the correct temporal

sequence.1

By quality of service we refer to a number of non-
functional properties that do not directly affect the
semantics, but that are nonetheless of fundamental
importance for the practical realization and usage
of the event service. A number of other interface
functions will be added to deal with quality of ser-
vice settings such as authentication and security,
and transactional communications.

3.7.1 Rationale: Expressiveness vs. Scalability

The rationale for our formal definition of notifica-
tions, filters, patterns, and compatibility relations
goes beyond a clear specification of the semantics
of the event service. The realization of the event
service by means of distributed event servers, re-
quires to disseminate some information concern-
ing subscriptions and advertisements among event
servers in order to control the flow of notifica-
tions towards interested parties. In the distribu-
tion of this information, the compatibility relations
together with other similar relations between fil-
ters (� �� that defines the compatibility of two sim-
ple subscriptions and � �� that works for two adver-
tisements), play a fundamental role. In fact, sim-
ilarly to the optimization of queries in a database,
using the compatibility relations, the event service
can optimize the deployment of filter- and pattern-
matchers to minimize the usage of communication
and computation resources.

Thus, for the practical realization of the event
service and for its scalability, it is essential that
these relations can be efficiently implemented. The
relations that pose significant problems are clearly
the ones that involve two filters (e.g., � � �); in fact,
computing � � �� �

is just a matter of applying the
filter defined by

�
to � , which involves computing

a conjunction of simple predicates evaluated for a

1This assumption would require the existence of a global
clock, an upper bound for the network latency and the network
diameter, and sufficiently big communication buffers. Note that
while these latter requirements can pose serious engineering
trade-offs, the availability of high-resolution GPS services makes
the first assumption very reasonable for most practical applica-
tions.

7

particular instance of their independent variables.
On the other hand, comparing two filters, to verify� � � � � is equivalent to verifying the implication be-
tween two expressions of predicates for every pos-
sible notification.

Even in our particular case in which filter ex-
pressions are conjunctions of simple predicates,
this problem can be very hard to solve depending
on the nature of types and operators that consti-
tute the simple predicates. Given an attribute fil-
ter �-% � � � ��� ��� � ��� � of name

�
, type � , oper-

ator � � and value � , and another attribute filter
�,) � � � ��� ��� � ��� � having the same name and type
plus operator � � and value � , we want to be able
to decide whether or not the first filter implies the
second:

� �-%	�
�,)*� � ��� �� ��� � � � ��� ���
� � � � ��� �

Good operators are those that define equivalence
relations and order relations on totally ordered sets.
The usual set of basic types found in a modern
programming language (numbers, strings, chars,
booleans, etc.) and the usual operators (equality,
inequality, regular expression match for strings),
satisfy this constraint and also constitute a quite ex-
pressive vocabulary for filters.

Other systems adopt different notification mod-
els and different filtering capabilities. As a con-
sequence, they realize different degrees of expres-
siveness and scalability. Section 5 comments on
some of these choices with respect to the expres-
siveness/scalability spectrum.

4 Topologies and Algorithms

The Siena event service is architected as a dis-
tributed system. This section presents some alter-
native realizations in which many event servers co-
operate to provide a network-wide event service.

4.1 Server Topologies

4.1.1 Hierarchical Server Topology

A natural way of connecting event servers is accord-
ing to a hierarchical topology; for instance, this is
the topology of the distributed implementation of
the JEDI event dispatcher [2]. As shown in Figure 6,
each server in a hierarchical topology has a number
clients that can be either normal objects of interest
or interested parties or other event servers. In addi-
tion to these connections, a server could also have a
special connection to a parent server (the only out-
going arrow).

server client-server

client

H

H

H

H

Figure 6: Hierarchical server topology

It is important to note that in this topology, a
server does not distinguish between other servers
and its clients, and thus it treats those servers as
clients. Practically, this means that a ‘parent’ server
will be able to receive notifications, subscriptions,
and advertisements from all its clients, but it will
send only notifications to its clients.

4.1.2 Acyclic Peer-to-Peer Server Topology

In the acyclic peer-to-peer topology, servers com-
municate with each other as peers, thus allowing
a bi-directional flow of subscriptions and adver-
tisements as well as notifications. Figure 7 shows
an acyclic peer-to-peer topology of servers. Once
again, notice the different kinds of communication
occurring between clients and servers and among
servers.

8

client-server

server-server A

A A

A

A

Figure 7: Acyclic peer-to-peer server topology

4.1.3 Generic Peer-to-Peer Server Topology

The generic peer-to-peer topology allows the same
type of server-to-server communication intro-
duced by the acyclic peer-to-peer, but in addition
to that, it allows any pattern of connections be-
tween servers (see Figure 8).

client-server

server-server

G

G

G

G

G

Figure 8: Generic peer-to-peer server topology

4.2 Routing Techniques

Once connected, server must exchange notifica-
tions, subscriptions, and advertisements to realize
the service. This section presents the algorithms
that disseminate the proper information through-
out the network of servers making sure that noti-
fications are correctly delivered. Note that a net-
work of servers implementing the event service is
logically equivalent to a network of routers con-
necting sub-nets and realizing multicast routing. In
fact, the algorithms presented here are very sim-
ilar in principle to a combination of the Inter-
net Group Management Protocol (IGMP [6]) and
a reverse-path multicast routing algorithm [5, 4].

More details on the similarities and differences
with network-level multicasting can be found in
Section 5.

We have defined two classes of algorithms:

subscription forwarding: This technique uses
subscriptions to set the paths for notifications.
Every subscription is stored and forwarded
from the originating server to all the servers
in the network so to form a tree that con-
nects the subscriber to all the servers in the
network. When an object publishes a noti-
fication that matches that subscription, the
notification is routed towards the subscriber
following in reverse the path put in place by
the subscription;

advertisement forwarding: This technique uses
advertisements to set the paths for subscrip-
tions, which in turn set the paths for noti-
fications. Every advertisement is forwarded
throughout the network, thereby forming a
tree that reaches every server. When a server
receives a subscription, it propagates the sub-
scription in reverse along the path to the adver-
tiser, thereby activating the path. Notifications
are then forwarded only through the activated
paths.

There exists also the degenerate case of broad-
casting notifications, which we do not take into
consideration. Unsubscriptions and unadvertise-
ments are handled in a similar way to undo the ef-
fect of the corresponding subscription or advertise-
ment. As suggested by their names, subscription
forwarding and advertisement forwarding imple-
ment the subscription-based and advertisement-
based semantics respectively. There are two main
optimization strategies for saving communication
and computation resources that can be pursued by
applying these two algorithms, they are:

1. applying filters and matching patterns up-
stream: this means filtering notifications and
assembling patterns of notifications as close as
possible to publishers (see Figure 9);

9

filter X

1

3

2

4

5

6
filter Y

match XY

pub(X)

pub(Y)

sub(XY)

Figure 9: Applying filters and patterns upstream

2. replicating notifications downstream: this
means multicasting notifications as close as
possible to subscribers (see Figure 10).

replicate X

sub(X)

sub(X)pub(X)

filter X

1

3

2

4

5

6

Figure 10: Multicasting of notifications down-
stream

The broadcasting or flooding process that char-
acterizes both subscription forwarding and ad-
vertisement forwarding creates minimal spanning
trees for each source. The realization of this process
depends upon the underlying topology of servers.
The solution is trivial in the case of acyclic topolo-
gies (i.e., hierarchical and acyclic peer-to-peer), but
it requires additional data structures and protocols
for the generic graph topology [3].

In propagating requests, servers maintain tables
of subscriptions and/or advertisements. When an
event server receives a new request, say a subscrip-
tion, that is already covered by a previously served
one, the server simply adds the subscriber to the
local list and no other action is taken. If no such
subscripition is present in the tables, the new re-
quest is added to the table and propagated. This al-
lows to prune of entire subtrees in the propagation.
For example, in the scenario of Figure 10, when

server 4 receives the forward of a subscription for
� from server 5 for the first time, it propagates it
to server 3, and then all the way towards server 1.
However, when server 6 sends the same subscrip-
tion to server 4, server 4 stops the flooding.

Servers perform other types of optimizations too.
For example, in the advertisement forwarding al-
gorithm, when a server receives an advertisement
from one of its neighbor servers for which there ex-
ist matching subscriptions, the server forwards all
these subscriptions to the advertiser. In doing that,
the server tries to merge the batch of subscriptions
into a smaller number of more generic subscrip-
tions. Again, this can be done thanks to the sim-
ple structure of filters and the predictable nature of
predicates and types that can be used in filters.

For the recognition of patterns, event servers try
to assemble patterns from smaller sub-patterns or
single notifications that are already “available”. To
do this, servers rely on their tables of advertised
patterns. In short, when a server receives a sub-
scription that requests a pattern, it looks up the
table of advertised filters trying to break up that
sequence into smaller available filters or patterns.
If sub-patterns that together form the target se-
quence have been advertised by local clients or
neighbor servers, the server dispatches subscrip-
tions for every one of these parts and starts up
a monitor that recognizes the requested sequence
from the sub-sequences.

Whenever possible, a server will push the recog-
nition of entire sub-sequences towards the sources
of their components. For example, in the scenario
of Figure 9, server 5 notices that the sequence � �
can be broken into � and � and that both these
parts are available from the same server (4), thus
server 5 simply forwards the subscription for the
entire sequence. Server 4 in turns does exactly the
same thing forwarding the subscription to server 3.
Server 3 notices that � and � are advertised by
two different sources, thus it sends the two separate
simple subscriptions and start up the monitor.

Once again notice how the compatibility rela-
tions are crucial in every step of the forwarding
techniques. Also notice that the way that the
compatibility relations define the semantics of the

10

event service is motivated by the forwarding tech-
niques. In particular, the constraints posed by the
advertisement-based semantics make it possible
for event servers to maintain advertisements tables
that are necessary for decomposing and optimizing
pattern recognition.

5 Related Work

In this section we provide a brief survey of tech-
nologies that we believe are tightly related to the
problem of wide-area event notification, either be-
cause they attack the same problem or because
they provide important pieces of solutions.

5.1 Internet Basic Technology

A number of Internet technologies are worth men-
tioning because, if nothing else, they indeed realize
services on a wide-area network. Thus, even if none
of them is geared towards an event notification ser-
vice, it might be worthwhile to borrow their ideas
vis-a-vis scalability.

5.1.1 Domain Name Service

DNS is a scalable network service that is realized
in a distributed manner. The valuable idea that
we can borrow from DNS is its hierarchical archi-
tecture. The reason why the hierarchical architec-
ture works so well for DNS is that it maps very well
onto the data that it manages. In fact, the space
of domain names and the space of IP addresses are
hierarchical themselves and the mapping between
them preserves a lot of the hierarchical properties.
Unfortunately, the space of notifications doesn’t ex-
hibit any hierarchical structure and, even if we de-
cided to force this type of structure (e.g., by defining
a mandatory well known attribute and a hierarchi-
cal set of values for it), this would not naturally map
onto a hierarchical location of objects. Another dif-
ferentiator is the essential read-only nature of the
DNS service, which does not apply much to event
notification services.

5.1.2 USENET News

The USENET News system with its main protocol
NNTP [9] is perhaps the best example of a scal-
able user-level one-to-many communication facil-
ity. USENET News messages are modeled after e-
mail messages, yet they provide additional infor-
mation (headers) that can be used by NNTP com-
mands to direct their distribution. NNTP provides
both client-server and server-server commands.
The topology of news servers is very similar to (and
in fact inspired) the acyclic peer-to-peer topology.

The main problem with USENET News and
NNTP that limits usability as an event service is
that the selection mechanisms are not very sophis-
ticated. At the protocol level, messages are filtered
based only on their newsgroups and on their date.
The newsgroup name space is organized in a hi-
erarchy, and the protocol allows wild-card expres-
sions over group names. Although group names
and sub-names reflect the general subject and con-
tent of messages, the filter that they realize is too
coarse-grained for most users and definitely inad-
equate for a general-purpose event service. This
results in unnecessary transfers of entire groups of
messages. The service is thus scalable but still quite
heavyweight, and the time frame of news propaga-
tion ranges from hours to days.

5.1.3 IP Multicast

MBone is a network-level infrastructure that real-
izes an efficient one-to-many communication ser-
vice. An MBone or multicast IP address is a virtual
address that corresponds to a group of hosts. Hosts
can join or leave a group at any time. An IP packet
addressed to a host group will be delivered to all the
hosts in that group. IP multicast per se is a con-
nectionless best-effort (unreliable) service. A reli-
able transport layer can be implemented on top of
IP multicast.

We consider the IP multicast infrastructure and
its routing algorithms to be the most important
technology related to the Siena event service. IP
multicast may be used as an underlying transport
mechanism for notifications and the ideas devel-

11

oped for routing multicast packets can be adapted
to solve the problem of forwarding notifications in
an event service. But the IP multicast infrastructure
alone does not qualify as an event service because
of limitations in its addressing. The main problem
is mapping expressions of interest into IP group ad-
dresses in a scalable way. Even assuming that a sep-
arate service, perhaps similar to DNS, is available
for managing and resolving the mapping, the ad-
dressing scheme itself still poses major limitations
in combining filters and patterns. Because MBone
never relates two different IP groups, it would not
be possible to exploit the compatibility relations
between filters and thus it would not be possible to
assemble filters into patterns. Notifications match-
ing more than one filter or participating in more
than one pattern would map into several multicast
addresses, each one being routed in parallel and
autonomously by MBone, thus defeating the whole
purpose of the event service.

5.2 Event Notification Technologies

Some technologies specifically realize an event no-
tification service, and some of them also attempt to
extend their support to wide-area networks. To re-
late these systems to Siena, we adopt the classifi-
cation framework defined in [2] and concentrate in
particular on subscription languages.

5.2.1 Channel-based Subscriptions

The simplest subscription mechanism is the chan-
nel. Interested parties can listen to a channel by
subscribing to it. An object of interest publishes
a notification by addressing it to a specific chan-
nel; as a consequence, the notification is delivered
to all the parties that are listening to that channel.
Channel-based event services offer coarse-grained
filtering and no patterns. Since channels define
a partitioned address space for notifications, their
service is equivalent to a reliable multicast commu-
nication. The CORBA Event Service [12] adopts a
channel based architecture.

5.2.2 Subject-based Subscription

Some systems extend the concept of channel to
subject-based addressing. In this case, event noti-
fications contain a well-known attribute (the sub-
ject) that determines their address, while the re-
maining part of the notification is opaque for the
event service. The main difference with respect
to channels is that here subscriptions can express
interest in many (potentially infinitely many) sub-
jects/channels by specifying some form of expres-
sions to match a subject. Also, in this model,
two different subscriptions can define overlapping
sets of notifications. TIBCO Rendezvous [8] adopts
a subject-based subscription mechanism. In TIB
Rendezvous, the subject is a list of strings over
which it is possible to specify filters based on a lim-
ited form of regular expressions; for example, the
filter �����������
	��������������������������������� will select all the
notifications whose subject contains �����������
	 in its
first position followed by ����� ��������� in second posi-
tion, any string in third position, and a fourth string
that starts with �����!� .

5.2.3 Content-based Subscription

By extending the domain of filters to the whole
content of notifications we obtain another class
of subscriptions called content-based. Content-
based subscriptions are conceptually very similar
to subject-based ones. However, by making the
whole structured content of notifications visible to
subscriptions, they give more freedom in the en-
coding the data upon which filters can be applied
and which the event service can use for setting up
routing information. Moreover, exposing the struc-
ture of notifications makes their type system (if any
is adopted) visible too, thus, allowing more expres-
sive and clear filters. Examples of systems that pro-
vide this kind of subscription language are JEDI [2],
Yeast [10], GEM [11], Elvin [14], and Siena itself.

12

6 Experience

The evaluation of distributed software systems is a
difficult task, and the Siena event service is no ex-
ception. Because of its highly distributed nature,
it is impossible to implement an event service and
deploy it on a significant number of nodes just to
see how it works. Not only it would be difficult to
measure its performance, but also the cost of refin-
ing its topologies and algorithms would be too high
at least in the early phases of its design.

So, in order to obtain feedback early in the design
and development of Siena, and to have a quantita-
tive evaluation of its topologies and algorithm, we
adopted an approach that is common practice in
the computer networks community for the valida-
tion of communication protocols and distributed
systems in general. We chose to perform system-
atic simulations of different combinations of server
topologies and dispatching algorithms in several
network scenarios.

6.1 Simulation Framework

In simulating a network scenario, several models
must be incorporated into the scenario. These
models define the network topology, the layout of
event servers, the population of applications (i.e.,
the distribution of interested parties and objects of
interest), their behavior, etc. Clearly, every model
makes certain simplifying assumptions. Also, ev-
ery model is characterized by a significant num-
ber of parameters, which must be adjusted to re-
flect reality as faithfully as possible. These are the
most important models we adopted in our simula-
tion framework together with their primary param-
eters:

 network model: The network model describes
the physical (wide-area) communication net-
work underlying the event service. The net-
work is characterized by a graph. Each node
in the graph represents a host or a cluster of
nodes connected by a fast local-area subnet,
and every edge represents a link with its la-
tency and bandwidth. One way of modeling

networks is to use a real network as a bench-
mark for which these parameters can be mea-
sured. The other way, adopted in our frame-
work, is to use randomly generated graphs
that are good approximations of the real net-
work [15].

 server model: We use a layout of servers in
which every network node hosts one server.
We also assume that the connections between
servers match the physical topology of the net-
work. This second principle assumes that sys-
tem administrators have a view of the topology
of the immediate neighborhood of their subnet
and that they can configure the event servers
accordingly.

 object distribution: This model defines the dis-
tribution of objects of interest and interested
parties among subnets. For now, we use an ho-
mogeneous distribution of objects. Thus, two
parameters are given for the number per node
of objects of interest and interested parties re-
spectively.

 objects behavior: Although we could simu-
late real applications, we model applications
as Poisson processes with respect to genera-
tion and consumption of events. Thus, the pa-
rameters that govern their behavior are the av-
erage time between two requests and the ra-
tio between the number of requests issued per
request type. This defines, for example, how
many notifications are published for each ad-
vertisement.

 computation and communication model: Ob-
jects communicate by exchanging messages.
These messages can carry event service re-
quests (notifications, subscriptions, etc.) as
well as control messages or forwarded mes-
sages that follow from some service request.
Objects execute their own algorithm in re-
sponse to messages or to the expiration of a
time-out. Objects can send messages, set time-
outs, create other objects or destroy other ob-
jects.

13

6.2 Running Simulations

Once a network scenario is defined, we run several
simulations and collect traces of all the low-level
messages exchanged between processes, hosts,
and subnets. Then we analyze these traces by
grouping messages according to some specific cri-
teria (e.g., per host, per event service request, per
type of request) and by computing the message
count, minimum and maximum values, average
value, and standard deviation of metrics such as
network cost and delay. The network cost is a
per-link parameter provided by the network model
that accounts for the usage of communication re-
sources in sending a message through a link. In
our framework, we assume that the cost is propor-
tional to the inverse of the bandwidth. By varying
some parameters of the network scenario, such as
the number of interested parties per node, we can
plot these metrics and obtain indications of the be-
havior of that algorithm.

0

50

100

150

200

250

300

350

1 10 100 1000 10000
interested parties

AVERAGE COST per (client) service / parties (sites=100, (topology=ce,hs,as,aa), objects=10)

ce
hs
as
aa

Figure 11: Scalability of some topologies and algo-
rithms

Figure 11 shows the scalability of four combina-
tion of server topology and routing algorithm: ce
= centralized, hs = hierarchical + subscription for-
warding, as = acyclic + subscription forwarding,
and aa = acyclic + advertisement forwarding. All the
scenarios were executed on a network of a hundred
nodes. The metric plotted is the average cost of

messages grouped on a per-request basis; the unit
of measure is not really relevant since we just want
to compare different curves. The independent vari-
able is the total number of interested parties.

The simulations that we performed so far clearly
show that our topologies for distributed event
services provide the scalability that can not be
achieved with a centralized solution. In distin-
guishing the various distributed topologies, simu-
lations show that the peer-to-peer topologies dis-
tribute the traffic evenly among servers, as opposed
to the hierarchical topology that tends to over-load
only a few nodes (at the highest level of the hierar-
chy). The simulator has been also a very effective
testing tool for the development of the routing al-
gorithms.

7 CONCLUSION

This paper has described our work on Siena, a dis-
tributed, Internet-scale event notification service.
We have described the design of the interface to the
service, the algorithms and topologies we have de-
signed to support event notification, and our ongo-
ing simulation and evaluation work.

The simulation framework that we constructed
has helped us significantly in refining topologies
and algorithms. Also, the simulations confirm our
intuitions about the scalability of the topologies
and algorithms that we propose. However, we do
not consider our evaluation effort to be complete.
In fact, we plan on continuing our evaluation ef-
fort by exploring the parameter space in several di-
rections. In particular, we are simulating different
ranges of behavioral parameters to see which algo-
rithms are most sensitive to different classes of ap-
plications.

We have implemented a prototype of Siena that
realizes the acyclic topology with the subscription
forwarding algorithm. We used this prototype as
the event service of an agent-based deployment
system called the SoftwareDock [7]. The current
version of the prototype provides a reduced version
of the notification model with only strings and in-
tegers and a few operators. Siena uses standard In-

14

ternet technology, so its data model is transmitted
in XML format, and servers are able to use straight
TCP/IP as well as SMTP as a transport layer for mes-
sages. We plan on extending the prototype to im-
plement the advertisement forwarding algorithm
with a larger variety of types and operators and
other transport layers including HTTP. This new
version of the prototype will also allow us to ap-
ply the pattern matching optimizations that we dis-
cussed.

Acknowledgments

We would like to thank Gianpaolo Cugola, Elisa-
betta Di Nitto, Alfonso Fuggetta, Richard Hall, Den-
nis Heimbigner, and André van der Hoek for their
considerable contributions in discussing and shap-
ing many of the ideas presented in this paper.

Effort sponsored by the Defense Advanced Re-
search Projects Agency, and Air Force Research
Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-97-2-0021; by
the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under grant number
F49620-98-1-0061, F30602-94-C-0253 and F30602-
98-2-0163; and by the National Science Foundation
under Grant Number CCR-9701973. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon.

The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies or
endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency, Air
Force Research Laboratory, Air Force Office of Sci-
entific Research or the U.S. Government.

References

[1] T. Barners-Lee. Universal Resource Identifiers
in WWW, A Unifying Syntax for the Expression
of Names and Addresses of Objects on the Net-
work as used in the World-Wide Web. Internet

Request For Comments (RFC) 1630, Internet
Engineering Task Force, June 1994.

[2] G. Cugola, E. Di Nitto, and A. Fuggetta. The
JEDI event-based infrastructure and its appli-
cation to the development of the OPSS WFMS.
Technical report, CEFRIEL – Politecnico di Mi-
lano, Milano, Italy, August 1998. submitted for
publication.

[3] Y. K. Dalal and R. M. Metcalfe. Reverse path
forwarding of broadcast packets. Communi-
cations of the ACM, 21(12):1040–1048, Decem-
ber 1978.

[4] S. Deering, D. Estrin, D. Farinacci, V. Ja-
cobson, C. Liu, and L. Wei. The PIM
Architecture for Wide-Area Multicast Rout-
ing. IEEE/ACM Transactions on Networking,
4(2):153–162, April 1996.

[5] S. E. Deering and D. R. Cheriton. Multicast
Routing in Datagram Networks and Extended
LANS. ACM Transactions on Computer Sys-
tems, 8(2):85–111, May 1990.

[6] W. Fenner. Internet Group Management Pro-
tocol, Version 2. Internet Request For Com-
ments (RFC) 2236, Internet Engineering Task
Force, November 1997.

[7] R. S. Hall, D. Heimbigner, A. van der Hoek,
and A. L. Wolf. An Architecture for Post-
Development Configuration Management in a
Wide-Area Network. In Proceedings of the 17 �

�

International Conference on Distributed Com-
puting Systems, Baltimore, USA, May 1997.

[8] T. Inc. Rendezvous information bus. Technical
report, TIBCO Inc., 1996.
http://www.rv.tibco.com/rvwhitepaper.html.

[9] B. Kantor and P. Lapsley. Network News Trans-
fer Protocol – A Proposed Standard for the
Stream-Based Transmission of News. Inter-
net Request For Comments (RFC) 977, Inter-
net Engineering Task Force, February 1986.

15

[10] B. Krishnamurthy and D. S. Rosenblum.
Yeast: A General Purpose Event-Action Sys-
tem. IEEE Transactions on Software Engineer-
ing, 21(10):845–857, October 1995.

[11] M. Mansouri-Samani and M. Sloman. GEM
A Generalized Event Monitoring Language for
Distributed Systems. IEE/IOP/BCS Distributed
Systems Engineering Journal, 4(2):96–108, June
1997.

[12] Object Management Group. CORBAservices:
Common Object Service Specification. Tech-
nical report, Object Management Group, July
1998.

[13] D. S. Rosenblum and A. L. Wolf. A Design
Framework for Internet-Scale Event Observa-
tion and Notification. In Proceedings of the
Sixth European Software Engineering Confer-
ence, Zurich, Switzerland, September 1997.
Springer-Verlag.

[14] B. Segall and D. Arnold. Elvin has left the
building: A publish/subscribe notification ser-
vice with quencing. In Proceedings of AUUG97,
July 1998.

[15] E. W. Zegura, K. L. Calvert, and S. Bhattachar-
jee. How to Model an Internetwork. In Pro-
ceedings of IEEE Infocom, April 1996.

16

